SPEC 46461

CU Compressed 15kV NLEPR Insulation 133% IL AIA Red CPE-TP Jacket. MV 105 - Tray Rated - Sunlight Resistant - For Direct Burial

Type MV-105 Three Conductor Copper, 220 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133% Insulation Level, Tape Shield, Aluminum Interlocked Armor (AIA), Thermoplastic Chlorinated Polyethylene (CPE-TP) Jacket. Silicone Free

...

Construction:

  1. Conductor:Class B compressed stranded bare copper per ASTM B3 and ASTM B8 (Tinned Copper per ASTM B33 optional)
  2. Conductor Shield:Semi-conducting cross-linked copolymer
  3. Insulation:220 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133% Insulation Level,
  4. Insulation Shield:Strippable semi-conducting cross-linked copolymer
  5. Copper Tape Shield:Helically wrapped 5 mil copper tape with 25% overlap
  6. Grounding Conductor:Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8 (Tinned Copper per ASTM B33 optional)
  7. Filler:Wax paper filler
  8. Binder:Polypropylene tape
  9. Armor:Aluminum Interlocked Armor (AIA)
  10. Overall Jacket: Black thermoplastic Chlorinated Polyethylene (CPE-TP) jacket

Applications and Features:

Southwire’s 15KV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated at -35°C for cold bend when UL listed. Rated at -40°C for cold bend and cold impact and marked with "LTGG" when CSA listed or dual UL/CSA listed. For uses in Class I and II, Division 2 hazardous locations per NEC Article 501 and 502.Rated for 1000 lbs./FT maximum sidewall pressure.

Specifications:

  • ASTM B3 Soft or Annealed Copper Wire
  • ASTM B8 Concentric-Lay-Stranded Copper Conductors
  • ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire
  • UL 1072 Medium-Voltage Power Cables
  • UL 1685 Vertical-Tray Fire Propagation and Smoke Release Test
  • ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable
  • AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements)
  • Made in America: Compliant with both Buy American and Buy America Act (BAA) requirements per 49 U.S.C. § 5323(j) and the Federal Transit Administration Buy America requirements per 49 C.F.R. part 661
  • Sample Print Legend:

    {SQFTG_DUAL} SOUTHWIRE® POWER CABLE {UL} 3/C X AWG CU 220 MILS NL-EPR 15KV 133% INS LEVEL 25%TS GW 1 X X AWG CU MV-105 OR MC FOR CT USE SUN. RES. FOR DIRECT BURIAL {NESC
    Table 1 – Weights and Measurements
    Cond. SizeStrand CountDiameter Over ConductorDiameter Over InsulationDiameter Over Insulation ShieldGroundDiameter Over armorJacket ThicknessApprox. ODCopper WeightApprox. WeightMax Pull TensionMin Bending Radius
    AWG/KcmilNo. of StrandsinchinchinchNo. x AWGinchmilinchlb/1000ftlb/1000ftlbinch
    1190.3220.8000.8601x42.222602.3429622664200816.3
    All dimensions are nominal and subject to normal manufacturing tolerances
    ◊ Cable marked with this symbol is a standard stock item
    Table 2 – Electrical and Engineering Data
    Cond. SizeDC Resistance @ 25°CAC Resistance @ 90°CCapacitive Reactance @ 60HzInductive Reactance @ 60HzZero Sequence ImpedancePositive Sequence ImpedanceShield Short Circuit Current 6 CyclesAllowable Ampacity In Duct 90/105°CAllowable Ampacity In Air 90/105°C
    AWG/KcmilΩ/1000ftΩ/1000ftMΩ*1000ftΩ/1000ftΩ/1000ftΩ/1000ftAmpAmpAmp
    10.1280.1620.0470.0450.420 + j0.3540.056 + j0.0382695170/185185/210
    * NEC ampacities are based on:
    * For Duct: Table 310.60(C)(13) Detail 1.
    * For Free Air: Table 310.60(C)(5).
    * Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center.
    * Sequence Impedance values are based on Rho Earth Resistivity: 100 Ohm-Meter/1000ft.
    * Capacitive Reactance is between Phase-to-Shield.

    Revision: 1.000.001

    Updated On: July 3, 2024, 9:53 p.m. UTC