SPEC 46319
1/C Compact CU 15kV 220 NLEPR 133% SIMpull® PVC MV-105
Type MV-105 Single Conductor Compact Copper, 220 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133% Insulation Level, Tape Shield, SIMpull® Polyvinyl Chloride (PVC) Jacket, Dual Rated UL/CSA

Construction:
- Conductor:Class B compact stranded per ASTM B496
- Conductor Shield:Semi-conducting cross-linked copolymer
- Insulation:220 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133% Insulation Level,
- Insulation Shield:Strippable semi-conducting cross-linked copolymer
- Copper Tape Shield:Helically wrapped 5 mil copper tape with 25% overlap
- Overall Jacket:Polyvinyl Chloride (PVC)
Applications and Features:
Southwire’s 15KV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial when installed with a grounding conductor in close proximity that conforms to NEC section 311.36 and 250.4(A)(5), and where su- perior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated at -35°C for cold bend. ST1 (low smoke) Rated for sizes 1/0 and larger. PVC jacket is made with SIM technology and has a coefficient of friction COF of 0.2. Cable can be installed in conduit without the aid of lubrication. Rated for 1000 lbs./FT maximum sidewall pressure.
Specifications:
Sample Print Legend:
{SQFTG_DUAL} SOUTHWIRE SIMpull{R} POWER CABLE MASTER-DESIGN {UL} XXX AWG CPT CU 220 MILS NL-EPR 15KV 133% INS LEVEL 25%TS MV-105 FOR CT USE SUN. RES. {NESC} PAT www.patentSW.com
Table 1 – Weights and Measurements
Stock Number | Cond. Size | Diameter Over Conductor | Diameter Over Insulation | Diameter Over Insulation Shield | Jacket Thickness1 | Approx. OD | Approx. Weight | Max Pull Tension | Min Bending Radius | Conduit Size* |
---|---|---|---|---|---|---|---|---|---|---|
AWG/Kcmil | inch | inch | inch | mil | inch | lb/1000ft | lb | inch | inch | |
TBA | 2 | 0.282 | 0.76 | 0.82 | 80 | 1 | 656 | 530 | 12 | 3 |
All dimensions are nominal and subject to normal manufacturing tolerances
◊ Cable marked with this symbol is a standard stock item
* Conduit size based on 3 phase 40% fill-factor without ground
1 Comply with ICEA S-93-639 Appendix C for jacket thickness determination
1 Comply with ICEA S-93-639 Appendix C for jacket thickness determination
Table 2 – Electrical and Engineering Data
Cond. Size | DC Resistance @ 25°C | AC Resistance @ 90°C | Capacitive Reactance @ 60Hz | Inductive Reactance @ 60Hz | Zero Sequence Impedance* | Positive Sequence Impedance* | Shield Short Circuit Current 6 Cycles | Allowable Ampacity In Duct 90/105°C† | Allowable Ampacity In Air 90/105°C‡ |
---|---|---|---|---|---|---|---|---|---|
AWG/Kcmil | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp |
2 | 0.162 | 0.204 | 0.0523 | 0.0507 | 0.572 + j0.45 | 0.204 + j0.052 | 2352 | 155/165 | 195/215 |
* Calculations are based on three cables triplexed / 5 mil 25 % over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-meter
† Ampacities are based on TABLE 310.60(C)(77) Detail 1. of the 2020 National Electrical Code (20°C Ambient Earth Temperature, Thermal Resistance ROH of 90)
‡ Ampacities are based on TABLE 310.60(C)(69) of the 2020 National Electrical Code (40°C Ambient Air Temperature)
† Ampacities are based on TABLE 310.60(C)(77) Detail 1. of the 2020 National Electrical Code (20°C Ambient Earth Temperature, Thermal Resistance ROH of 90)
‡ Ampacities are based on TABLE 310.60(C)(69) of the 2020 National Electrical Code (40°C Ambient Air Temperature)
Revision: 3.0.00C