SPEC 26105

HVTECK CU 1/C 90NLEPR CB PVC AIA PVC 5kV 100% CSA

Single Conductor, 90 Mils No Lead Ethylene Propylene Rubber (NL-EPR), 100% Insulation Level, Concentric Bond, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket

...

Construction:

  1. Conductor:Class B compressed stranded bare copper per ASTM B3 and ASTM B8
  2. Conductor Shield:Semi-conducting cross-linked copolymer
  3. Insulation:90 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 100% insulation level
  4. Insulation Shield:Strippable semi-conducting cross-linked copolymer
  5. Tape Shield:5 mil tape shield
  6. Concentric Shield:Concentrically applied copper bond / shield wires. Complies with greater than the minimum requirement as per Table 44, CSA Standard C68.10 and Table 16A, Canadian Electrical Code Part 1
  7. Neutral Separator:Mylar tape
  8. Inner Jacket:PVC inner jacket
  9. Armour:Aluminum Interlocked Armour (AIA)
  10. Overall Jacket:Orange Polyvinyl Chloride (PVC) Jacket

Applications and Features:

Southwire's 5kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant.

Specifications:

  • ASTM B3 Soft or Annealed Copper Wire
  • ASTM B8 Concentric-Lay-Stranded Copper Conductors
  • CSA C22.2 No. 174 Cables in Hazardous Locations
  • CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods
  • CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications - 5 to 46 KV
  • CSA C68.3 Shielded & Concentric Neutral Power Cable - 5 to 46 kV
  • CSA LTGG [-40°C] - as per C68.10 - for Cold Bend and Impact rating
  • CSA HL - for Hazardous Locations rating
  • CSA SUN RES - for Sunlight Resistant rating
  • ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable
  • ICEA T-29-520 Flame Test (210,000 BTU/Hr)
  • IEEE 383 Flame Test (70,000 btu)
  • IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test (1/0 and Larger)
  • FT1 Flame Test (1,706 BTU/Hr nominal - Vertical Wire Flame Test)
  • AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements)
  • Sample Print Legend:

    {SQMTR} {CSA} SOUTHWIRE® POWER CABLE {NESC} 1/C XXX KCMIL CU X.XX mm (90 mils) NL-EPR AIA 5KV 100% INS LEVEL 25%TS CB XX X XX AWG SUN RES 105°C FT4 (-40°C) LTGG RoHS
    Table 1 – Weights and Measurements
    Cond. SizeStrandDiameter Over ConductorDiameter Over InsulationInsul. ThicknessDiameter Over Insulation ShieldConcentric NeutralInner Jacket ThicknessDia. Over ArmourOverall Jacket ThicknessApprox. ODCopper WeightApprox. Weight
    AWG/KcmilNo.inchinchmilinchNo. x AWGmilinchmilinchlb/1000ftlb/1000ft
    350370.6610.887900.94721x14801.601601.72113652145
    All dimensions are nominal and subject to normal manufacturing tolerances
    ◊ Cable marked with this symbol is a standard stock item
    1 Comply with ICEA S-93-639 Appendix C for jacket thickness determination
    Table 2 – Electrical and Engineering Data
    Cond. SizeMin Bending RadiusMax Pull TensionDC Resistance @ 25°CAC Resistance @ 90°CCapacitive Reactance @ 60HzInductive Reactance @ 60HzZero Sequence ImpedancePositive Sequence ImpedancePhase Short Circuit Current @ 6 CyclesAllowable Ampacity In Air 90°CAllowable Ampacity Directly Buried 90°C
    AWG/KcmilinchlbΩ/1000ftΩ/1000ftMΩ*1000ftΩ/1000ftΩ/1000ftΩ/1000ftAmpAmpAmp
    35020.728000.0310.0410.0130.0440.396 + j0.3560.042 + j0.04416376537456
    * Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center.
    * CEC ampacities are based on:
    3-1/C in air copper and aluminum: D17M
    3-1/C direct buried copper and aluminum: D17A
    Table 3 – Weights and Measurements (Metric)
    Cond. SizeStrandDiameter Over ConductorDiameter Over InsulationInsul. ThicknessDiameter Over Insulation ShieldConcentric NeutralInner Jacket ThicknessDia. Over ArmourOverall Jacket ThicknessApprox. ODCopper WeightApprox. Weight
    AWG/KcmilNo.mmmmmmmmNo. x AWGmmmmmmmmkg/kmkg/km
    3503716.7922.532.2924.0521x142.0340.671.5243.7120313192
    All dimensions are nominal and subject to normal manufacturing tolerances
    ◊ Cable marked with this symbol is a standard stock item
    1 Comply with ICEA S-93-639 Appendix C for jacket thickness determination
    Table 4 – Electrical and Engineering Data (Metric)
    Cond. SizeMin Bending RadiusMax Pull TensionDC Resistance @ 25°CAC Resistance @ 90°CCapacitive Reactance @ 60HzInductive Reactance @ 60HzZero Sequence ImpedancePositive Sequence ImpedancePhase Short Circuit Current @ 6 CyclesAllowable Ampacity In Air 90°CAllowable Ampacity Directly Buried 90°C
    AWG/KcmilmmnewtonΩ/kmΩ/kmMΩ*kmΩ/kmΩ/1000ftΩ/1000ftAmpAmpAmp
    350525.78124600.10170.130.00400.14440.396 + j0.3560.042 + j0.04416376537456
    * Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center.
    * CEC ampacities are based on:
    3-1/C in air copper and aluminum: D17M
    3-1/C direct buried copper and aluminum: D17A

    Revision: 1.000.000

    Updated On: July 12, 2024, 5:43 p.m. UTC