AL Compact 5/8kV NLEPR Insulation 133/100\% IL AIA PVC Jacket. MV 105 - Tray Rated - Sunlight Resistant - For Direct Burial

Type MV-105 Three Conductor Aluminum, 115 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133\% Insulation Level, Tape Shield, Aluminum Interlocked Armor (AIA), Polyvinyl Chloride (PVC) Jacket. Silicone Free

Image not to scale. See Table 1 for dimensions.

CONSTRUCTION:

1. Conductor: Class B compact stranded 8000 Series aluminum per ASTM B800 and ASTM B836
2. Conductor Shield: Semi-conducting cross-linked copolymer; A conductor separator is used for cable size larger than or equal to 500 Kcmil
3. Insulation: 115 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133\% Insulation Level,
4. Insulation Shield: Strippable semi-conducting cross-linked copolymer
5. Copper Tape Shield: Helically wrapped 5 mil copper tape with 25% overlap
6. Grounding Conductor: Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8
7. Filler: Wax paper filler
8. Binder: Polypropylene tape
9. Armor: Aluminum Interlocked Armor (AIA)
10. Overall Jacket: Polyvinyl Chloride (PVC)

APPLICATIONS AND FEATURES:

Southwire's 5KV cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of $105^{\circ} \mathrm{C}$ for normal operation, $140^{\circ} \mathrm{C}$ for emergency overload, and $250^{\circ} \mathrm{C}$ for short circuit conditions. Rated at $-35^{\circ} \mathrm{C}$ for cold bend when UL listed. Rated at $-40^{\circ} \mathrm{C}$ for cold bend and cold impact and marked with "LTGG" when CSA listed or dual UL/CSA listed. For uses in Class I and II, Division 2 hazardous locations per NEC Article 501 and 502.Rated for 1000 lbs./FT maximum sidewall pressure.

SPECIFICATIONS:

- ASTM B801 Concentric-Lay-Stranded Conductors of 8000 Series Aluminum Alloy
- ASTM B836 Compact Rounded Stranded Aluminum Conductors
- UL 1072 Medium-Voltage Power Cables
- UL 1685 Vertical-Tray Fire Propagation and Smoke Release Test
- ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable
- ICEA S-97-682 Standard for Shielded Utility Cable Rated for 5 - 46kV
- AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements)

Southwire Company, LLC | One Southwire Drive, Carrollton, GA 30119 | www.southwire.com

- Made in America: Compliant with both Buy American and Buy America Act (BAA) requirements per 49 U.S.C. § 5323(j) and the Federal Transit Administration Buy America requirements per 49 C.F.R. part 661

SAMPLE PRINT LEGEND:

\{SOFTG_DUAL\} SOUTHWIRE® POWER CABLE \{UL\} 3/C XX AWG COMPACT AL.--- \{ALUMAFLEX\}® AA8176 115 MILS NLEPR 5KV 133\%/8KV 100\% INS LEVEL 25\%TS GW 1 X XX AWG CU MV-105 OR MC FOR CT USE SUN. RES. FOR DIRECT BURIAL \{NESC\}

Table 1 - Weights and Measurements

Cond. Size	Strand Count	Diameter Over Conductor	Diameter Over Insulation	Diameter Over Insulation Shield	Ground	Diameter Over armor	Jacket Thickness	Approx. OD	Copper Weight	Aluminum Weight	Approx. Weight	Max Pull Tension	Min Bending Radius
AWG/ Kcmil	No. of Strands	inch	inch	inch	No. x AWG	inch	mil	inch	$\begin{aligned} & \mathrm{lb} / \mathrm{ft} \\ & 1000 \mathrm{ft} \end{aligned}$	lb/1000ft	$\begin{aligned} & \mathrm{lb} / \mathrm{ft} \\ & 1000 \mathrm{ft} \end{aligned}$	lb	inch
3/0	19	0.422	0.690	0.750	1x4	1.985	60	2.105	174	880	1913	3020	14.7

All dimensions are nominal and subject to normal manufacturing tolerances
\bullet Cable marked with this symbol is a standard stock item

* Strand count meets minimum number per ASTM

Table 2 - Electrical and Engineering Data

Cond. Size	$\begin{gathered} \text { DC } \\ \text { Resistance @ } \end{gathered}$	$\begin{gathered} \text { AC } \\ \text { Resistance @ } \\ 90^{\circ} \mathrm{C} \end{gathered}$	Capacitive Reactance @ 60 Hz	Inductive Reactance @ 60 Hz	Zero Sequence Impedance	Positive Sequence Impedance	Shield Short Circuit Current 6 Cycles	Allowable Ampacity In Duct $90 / 105^{\circ} \mathrm{C}$	Allowable Ampacity In Air 90/105 ${ }^{\circ} \mathrm{C}$
AWG/ Kcmil	ת/1000ft	ת/1000ft	M ${ }^{*} 1000 \mathrm{ft}$	ת/1000ft	ת/1000ft	ת/1000ft	Amp	Amp	Amp
3/0	0.105	0.133	0.025	0.035	$0.509+j 0.438$	$0.133+j 0.034$	2354	180/195	195/215

[^0]
[^0]: * NEC ampacities are based on:
 * For Duct: Table 310.60(C)(14) Detail 1.
 * For Free Air: Table 310.60(C)(6).
 * Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center.
 * Sequence Impedance values are based on Rho Earth Resistivity: 100 Ohm-Meter/1000ft.
 * Capacitive Reactance is between Phase-to-Shield.

