

Quad Parallel 600 Volt USE-2 Underground Service Entrance

CONSTRUCTION:

- 1. **Conductor:** Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum
- 2. **Insulation:** Cross Linked Polyethylene (XLPE)
- 3. **Neutral:** Cross Linked Polyethylene (XLPE) with three Yellow Extruded Stripes (YES)

For information about our Cable-Rejuvenation Services please visit us at: Cable-Rejuvenation Services
You can email us at: Cable-Rejuvenation Services

APPLICATIONS AND FEATURES:

Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum, insulated with cross-linked polyethylene. Neutrals are identified by three yellow extruded stripes. Cables with "YES" neutrals have sequential footage markers. Conductors are durably surface printed for identification. Three-phase conductors and one neutral conductor are quad paralleled. These cables are capable of operating continuously at the conductor temperature not in excess of 90°C for normal operation in wet and dry locations, 130°C for emergency overload, and 250°C for short circuit conditions. UL listed as USE-2 per UL 854 Service-Entrance Cables.

SPECIFICATIONS:

- ASTM B231 Standard Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
- ASTM B609 Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes
- ASTM B901 Standard Specification for Compressed Round Stranded Aluminum Conductors Using Single Input Wire Construction. (The number of strands for both phase and neutral may differ)
- UL 854 Service Entrance Cable
- ICEA S-105-692 Standard For 600 Volt Single Layer Thermoset Insulated Utility Underground Distribution Cables

Table 1 – Weights and Measurements

Stock Number	Code Word	Phase Cond. Size	Phase Strand	Dia. Over Phase Conductor	Phase Insul. Thickness	Dia. Over Phase Insulation	Neutral Cond. Size	Neutral Strand	Neutral Insul. Thickness	Approx. OD	Approx. Weight
		AWG/ Kcmil	No.	inch	mil	inch	AWG/Kcmil	No.	mil	inch	lb/1000ft
TBA	Itasca	2/0	19	0.405	80	0.565	2/0	11	80	1.369	824

All dimensions are nominal and subject to normal manufacturing tolerances

TBA stock codes are estimations only and actual product may vary. Please wait until a stock code is assigned to purchase connectors and/or fittings.

Table 2 – Electrical and Engineering Data

Code Word	Phase Cond. Size	Min Bending Radius	Max Pull Tension	DC Resistance @ 25°C	AC Resistance @ 75°C	Inductive Reactance @ 60Hz	Allowable Ampacity in Duct or Buried 75/90°C
	AWG/Kcmil	inch	lb	Ω/1000ft	Ω/1000ft	Ω/1000ft	Amp
Itasca	2/0	6.8	2555	0.133	0.159	0.043	108 / 120

Notes:

- 1. Inductive reactance assumes cables are cradled in conduit, and the neutral is carrying no current.
- 2. Triple parallel inductive reactance calculation assumes the phase conductors are adjacent to one another.
- 3. Conductors assumed to be reverse lay stranded, compressed construction.
- 4. Phase spacing assumes cables are touching.
- 5. Resistances shown are for the Phase conductors only.
- 6. Ampacity based on 90°C conductor temperature, 20°C ambient, RHO 90, 100% load factor.

^{1.} The actual number of strands may differ for single input wire per ASTM B901