HVTECK CU 3/C 140NLEPR TS PVC AIA PVC 8kV 133% CSA 3 Conductor, 140 Mils No Lead Ethylene Propylene Rubber (NL-EPR), 133% Insulation Level, Tape Shield, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket ### Image not to scale. See Table 1 for dimensions. #### **CONSTRUCTION:** - 1. **Conductor:** Class B compressed stranded bare copper per ASTM B3 and ASTM B8 - 2. Conductor Shield: Semi-conducting cross-linked copolymer - 3. **Insulation**: 140 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 133% insulation level - 4. **Insulation Shield:** Strippable semi-conducting cross-linked copolymer - 5. **Copper Tape Shield:** Helically wrapped 5 mil copper tape with 25% overlap - 6. **Filler:** Interstices filled with non-hydroscoping/non-wicking fillers - 7. **Grounding Conductor:** Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8 - 8. **Binder:** Polypropylene tape - 9. Inner Jacket: PVC inner jacket - 10. Armour: Aluminum Interlocked Armour (AIA) - 11. **Overall Jacket:** Orange Polyvinyl Chloride (PVC) Jacket #### **APPLICATIONS AND FEATURES:** Southwire's 8kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant. #### SPECIFICATIONS: - ASTM B3 Soft or Annealed Copper Wire - ASTM B8 Concentric-Lay-Stranded Copper Conductors - CSA C22.2 No. 174 Cables in Hazardous Locations - CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods - CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications 5 to 46 KV - CSA C68.3 Shielded & Concentric Neutral Power Cable 5 to 46 kV - CSA LTGG [-40°C] as per C68.10 for Cold Bend and Impact rating - CSA HL for Hazardous Locations rating - CSA SUN RES for Sunlight Resistant rating - ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable - ICEA T-29-520 Flame Test (210,000 BTU/Hr) - IEEE 383 Flame Test (70,000 btu) - IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test (1/0 and Larger) - IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test - FT1 Flame Test (1,706 BTU/Hr nominal Vertical Wire Flame Test) - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements) #### SAMPLE PRINT LEGEND: {SQMTR} {CSA} SOUTHWIRE® POWER CABLE {NESC} 3/C XXX AWG CU X.XXmm (140 mils) NL-EPR AIA GW 1 X X AWG CU 8KV 133% INS LEVEL 25%TS SUN. RES. 105°C FT4 HL (-40°C) LTGG RoHS ## **Table 1 – Weights and Measurements** | Stock
Number | Cond.
Size | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Ground
Size | Inner
Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |-----------------|---------------|--------|-------------------------------|--------------------------------|---------------------|--|----------------|------------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | | AWG/
Kcmil | No. | inch | inch | mil | inch | AWG | mil | inch | mil | inch | lb/
1000ft | lb/
1000ft | | 649834 | 500 | 37 | 0.789 | 1.092 | 140 | 1.152 | 3 | 125 | 3.129 | 85 | 3.299 | 5122 | 8123 | All dimensions are nominal and subject to normal manufacturing tolerances ## Table 2 – Electrical and Engineering Data | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | inch | lb | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 500 | 23.1 | 12000 | 0.022 | 0.030 | 0.015 | 0.031 | 0.380 +
j0.284 | 0.030 +
j0.031 | 3671 | 556 | 573 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center. ### **Table 3 – Weights and Measurements (Metric)** | Stock
Number | Cond.
Size | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Ground
Size | Inner
Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |-----------------|---------------|--------|-------------------------------|--------------------------------|---------------------|--|----------------|------------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | | AWG/
Kcmil | No. | mm | mm | mm | mm | AWG | mm | mm | mm | mm | kg/km | kg/km | | 649834 | 500 | 37 | 20.04 | 27.74 | 3.56 | 29.26 | 3 | 3.18 | 79.48 | 2.16 | 83.79 | 7622 | 12088 | All dimensions are nominal and subject to normal manufacturing tolerances [♦] Cable marked with this symbol is a standard stock item [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination [^]Black outer jacket TBA stock codes are estimations only and actual product may vary. Please wait until a stock code is assigned to purchase connectors and/or fittings. ^{*} CEC ampacities are based on: ^{3/}C in air copper and aluminum: D17N ^{3/}C direct buried copper and aluminum: D17E # Stock # 649834 | SPEC 26242 1 Comply with ICEA S-93-639 Appendix C for jacket thickness determination TBA stock codes are estimations only and actual product may vary. Please wait until a stock code is assigned to purchase connectors and/or fittings. ## Table 4 – Electrical and Engineering Data (Metric) | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | mm | newton | Ω/km | Ω/km | MΩ*km | Ω/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 500 | 586.74 | 53400 | 0.0722 | 0.10 | 0.0046 | 0.1017 | 0.380 +
j0.284 | 0.030 +
j0.031 | 3671 | 556 | 573 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center. 3/C in air copper and aluminum: D17N 3/C direct buried copper and aluminum: D17E [^]Black outer jacket ^{*} CEC ampacities are based on: