35kV AL 100% TRXLPE One-Sixth Neutral (Based on Short Circuit) HI-DRI-PLUS® Renewable (Solar or Wind) Moisture Blocked Aluminum Conductors. TRXLP Insulation. One-Sixth Copper Concentric Neutrals. XLPE Jacket **CONSTRUCTION:** - 1. Conductor: Moisture Blocked 1350 H16/H26 Aluminum, Class B Compressed or Compressed Unilay Stranded - 2. **Strand Shield:** Semi-conducting Crosslinked Polyethylene - 3. Insulation: Tree Retardant Crosslinked Polyethylene (TRXLP) - 4. **Insulation Shield:** Strippable Semi-conducting Crosslinked Polyethylene - 5. **Concentric Neutral:** Annealed Copper Wires Helically Applied One-Sixth Concentric Neutral - 6. **Overall Jacket & Water Block:** HI-DRI-PLUS® Water Swellable Powder Black Crosslinked Polyethylene (XLPE) with Red Extruded Stripes #### **APPLICATIONS AND FEATURES:** - Predominately used for renewable projects with wind or solar applications. - Suitable for use in wet or dry locations, direct burial, underground ducts, and exposure to direct sunlight. - To be used at conductor temperature not to exceed 105°C normal operation. - UL listed MV-105 - The concentric neutral counts and sizes listed in Table 1 are based on the ICEA P-45-482 short circuit calculation of an MV-90 design. The short circuit value in Table 1 is calculated using a higher thermal limit of a crosslinked XLPE jacket MV-105 design. #### SPECIFICATIONS: - UL 1072 Medium-Voltage Power Cables - ICEA S-94-649 Standard for Concentric Neutral Cables Rated 5 46kV - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements) - Made in America: Compliant with both Buy American and Buy America Act (BAA) requirements per 49 U.S.C. § 5323(j) and the Federal Transit Administration Buy America requirements per 49 C.F.R. part 661 - Optional CSA 68.5: -40°C and MV 90°C optional marking available upon request #### **SAMPLE PRINT LEGEND:** {SQFTG} SOUTHWIRE(R) HI-DRI-PLUS(R) (UL) XXX KCMIL AL 345 MILS TRXLPE TYPE MV-105 35KV 100% INSUL LEVEL -- (NESC) -- SOUTHWIRE {MMM} {YYYY} NON-CONDUCTING JACKET #### **Table 1 – Weights and Measurements** | Stocl
Numb | | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Concentric
Neutral | Neutral DC
Resistance
25°C | Jacket
Thickness | Approx.
OD | Approx.
Weight | Min
Bending
Radius | Max Pull
Tension | |---------------|---------------|-------------------------------|--------------------------------|---------------------|--|-----------------------|----------------------------------|---------------------|---------------|-------------------|--------------------------|---------------------| | | AWG/
Kcmil | inch | inch | mil | inch | No. x AWG | Ω /1000ft | mil | inch | lb /
1000ft | inch | lb | | 62634 | 6 1000 (61) | 1.084 | 1.857 | 345 | 1.997 | 12x12 | 0.138 | 75 | 2.312 | 2588 | 18.5 | 6000 | All dimensions are nominal and subject to normal manufacturing tolerances ## Table 2 – Electrical and Engineering Data | Cond
Size | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Charging
Current | Dielectric
Loss | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Short
Circuit
Current @
30 Cycle | Allowable
Ampacity in
Duct 90°C | Allowable
Ampacity
Directly
Buried 90°C | |--------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|---------------------|--------------------|-------------------------------|-----------------------------------|---|---------------------------------------|--| | AWG,
Kcmi | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | A/1000ft | W/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1000
(61) | 0.018 | 0.026 | 0.033 | 0.039 | 0.608 | 3.7 | 0.080 +
j0.699 | 0.026 +
j0.039 | 9862 | 550 | 615 | ^{*}Ampacities for Direct Buried are based on ICEA P-117-734-2016 Single-Conductor Solid Dielectric 15-35kV. Single Circuit Flat Direct Buried Figure 3 ## **Table 3 – Weights and Measurements (Metric)** | Stock
Number | Cond.
Size | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter
Over
Insulation
Shield | Concentric
Neutral | Neutral DC
Resistance
25°C | Jacket
Thickness | Approx.
OD | Approx.
Weight | Min
Bending
Radius | Max Pull
Tension | |-----------------|---------------|-------------------------------|--------------------------------|---------------------|--|-----------------------|----------------------------------|---------------------|---------------|-------------------|--------------------------|---------------------| | | AWG/
Kcmil | mm | mm | mm | mm | No. x AWG | Ω/km | mm | mm | kg/km | mm | newton | | 626346 | 1000
(61) | 27.53 | 47.17 | 8.76 | 50.72 | 12x12 | 0.45 | 1.91 | 58.72 | 3851 | 469.90 | 26700 | All dimensions are nominal and subject to normal manufacturing tolerances ## **Table 4 – Electrical and Engineering Data (Metric)** | Cond.
Size | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Charging
Current | Dielectric
Loss | Zero
Sequence
Impedance* | Positive
Sequence
Impedance* | Short
Circuit
Current @
30 Cycle | Allowable
Ampacity in
Duct 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|---------------------|--------------------|--------------------------------|------------------------------------|---|---------------------------------------|--| | AWG/
Kcmil | Ω/km | Ω/km | MΩ*km | Ω/km | A/km | W/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1000
(61) | 0.0591 | 0.09 | 0.0101 | 0.1280 | 1.995 | 12.1391 | 0.080 +
j0.699 | 0.026 + j0.039 | 9862 | 550 | 615 | ^{*}Ampacities for Direct Buried are based on ICEA P-117-734-2016 Single-Conductor Solid Dielectric 15-35kV. Single Circuit Flat Direct Buried Figure 3 [♦] Cable marked with this symbol is a standard stock item ^{*}Ampacities for Duct are based on ICEA P-117-734-2016 for Single-Conductor Solid Dielectric 15-35kV. Single Circuit Trefoil Conduit Figure 7. ^{*}Sequence Impedance values are based on Rho Earth Resistivity: 100 Ohm-Meter/1000ft. [♦] Cable marked with this symbol is a standard stock item ^{*}Ampacities for Duct are based on ICEA P-117-734-2016 for Single-Conductor Solid Dielectric 15-35kV. Single Circuit Trefoil Conduit Figure 7. ^{*}Sequence Impedance values are based on Rho Earth Resistivity: 100 Ohm-Meter/1000ft.