3/C CU 220 NLEPR TS PVC AIA PVC 15kV 133% TECK

3 Conductor, 220 Mils No Lead Ethylene Propylene Rubber NL EPR, 133% Insulation Level, Tape Shield, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armor (AIA), Polyvinyl Chloride (PVC) Jacket. Silicone Free

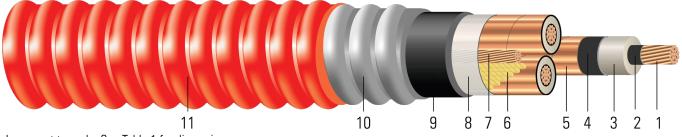


Image not to scale. See Table 1 for dimensions.

CONSTRUCTION:

- Conductor: Class B compressed stranded bare copper per ASTM B3 and ASTM B8 (Tinned Copper per ASTM B33 optional)
- 2. **Conductor Shield:** Semi-conducting cross-linked copolymer
- 3. Insulation: 220 Mils No Lead Ethylene Propylene Rubber NL EPR 133% insulation level
- 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer
- 5. **Copper Tape Shield:** Helically wrapped 5 mil copper tape with 25% overlap
- Grounding Conductor: Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8 (Tinned Copper per ASTM B33 optional)
- 7. Filler: Wax paper filler
- 8. Binder: Polypropylene tape
- 9. Inner Jacket: PVC inner jacket
- 10. Armor: Aluminum Interlocked Armor (AIA)
- 11. Overall Jacket: Red Polyvinyl Chloride (PVC) Jacket

APPLICATIONS AND FEATURES:

Southwire's 15KV Teck type cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated at -35°C for cold bend. For uses in Class I and II, Division 2 hazardous locations per NEC Article 501 and 502.Rated for 1000 lbs./ FT maximum sidewall pressure. The ground is sized to equal 50% of the phase conductor. Silicone free cable.

SPECIFICATIONS:

- ASTM B3 Standard Specification for Soft or Annealed Copper Wire
- ASTM B8 Concentric-Lay-Stranded Copper Conductors
- ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire
- UL 1072 Medium-Voltage Power Cables
- ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable
- ICEA T-29-520 Flame Test (210.000 BTU/Hr)
- IEEE 383 Flame Test (70,000 btu)
- IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test

SPEC 46465 Stock #: TBA

- AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV
- Made in America: Compliant with both Buy American and Buy America Act (BAA) requirements per 49 U.S.C. § 5323(j) and the Federal Transit Administration Buy America requirements per 49 C.F.R. part 661

SAMPLE PRINT LEGEND:

SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CU 220 NL EPR AIA 15kV 133% INS LEVEL 25% TS SUN RES 105°C FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]

Table 1 – Weights and Measurements

Stock Number	Cond. Size	Diameter Over Conductor	Diameter Over Insulation	Diameter Over Insulation Shield	Ground	Jacket Thickness ¹	Approx. OD	Approx. Weight	Max Pull Tension	Min Bending Radius
	AWG/ Kcmil	inch	inch	inch	No. x AWG	mil	inch	lb/1000ft	lb	inch
TBA	2	0.283	0.760	0.820	6	75	2.496	2852	1593	17.5

All dimensions are nominal and subject to normal manufacturing tolerances

Table 2 – Electrical and Engineering Data

Cond. Size	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Zero Sequence Impedance*	Positive Sequence Impedance*	Shield Short Circuit Current 6 Cycles	Allowable Ampacity Directly Buried 90/105°C [†]	Allowable Ampacity In Air 90/105°C [‡]
AWG/ Kcmil	Ω/1000ft	Ω/1000ft	MΩ*1000ft	Ω/1000ft	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
2	0.162	0.203	0.067	0.047	0.578+j0.419	0.203+j0.047	2700	185/200	165/185

^{*} Calculations are based on 5 mil 25 % over lapping copper tape shield / Conductor temperature of 90°C / Shield temperature of 45°C / Earth resistivity of 100 ohms-

[♦] Cable marked with this symbol is a standard stock item

¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination

[^] Black outer jacket

[†] Ampacities are based on Table D17N of the 2015 Canadian Electrical Code Part I (40°C Ambient Air Temperature, indoor installation)

[‡] Ampacities are based on Table D17E of the 2015 Canadian Electrical Code Part I