HVTECK CU 1/C 175NLEPR CB PVC AIA PVC 15kV 100% CSA Single Conductor, 175 Mils No Lead Ethylene Propylene Rubber (NL-EPR), 100% Insulation Level, Concentric Bond, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket Image not to scale. See Table 1 for dimensions. #### **CONSTRUCTION:** - 1. **Conductor:** Class B compressed stranded bare copper per ASTM B3 and ASTM B8 - 2. Conductor Shield: Semi-conducting cross-linked copolymer - 3. **Insulation**: 175 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 100% insulation level - 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer - 5. **Concentric Shield:** Concentrically applied copper bond / shield wires. Complies with greater than the minimum requirement as per Table 44, CSA Standard C68.10 and Table 16A, Canadian Electrical Code Part 1 - 6. **Neutral Separator:** Mylar tape - 7. Inner Jacket: PVC inner jacket - 8. Armour: Aluminum Interlocked Armour (AIA) - 9. Overall Jacket: Red Polyvinyl Chloride (PVC) Jacket #### **APPLICATIONS AND FEATURES:** Southwire's 15kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant. #### **SPECIFICATIONS:** - ASTM B3 Soft or Annealed Copper Wire - ASTM B8 Concentric-Lay-Stranded Copper Conductors - CSA C22.2 No. 174 Cables in Hazardous Locations - CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods - CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications 5 to 46 KV - CSA C68.3 Shielded & Concentric Neutral Power Cable 5 to 46 kV - CSA LTGG [-40°C] as per C68.10 for Cold Bend and Impact rating - CSA HL for Hazardous Locations rating - CSA SUN RES for Sunlight Resistant rating - ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable - ICEA T-29-520 Flame Test (210,000 BTU/Hr) - IEEE 383 Flame Test (70,000 btu) - IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test (1/0 and Larger) - FT1 Flame Test (1,706 BTU/Hr nominal Vertical Wire Flame Test) - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements) #### **SAMPLE PRINT LEGEND:** (CSA) SOUTHWIRE (NESC) #P# 1/C [#AWG or #kcmil] CU 175 NLEPR AIA 15kV 100% INS LEVEL CB [No. x SIZE] AWG SUN RES 105°C FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS] ### **Table 1 – Weights and Measurements** | Co
Si | nd.
ize | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter Over
Insulation
Shield | Concentric
Neutral | Inner Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |----------|------------|--------|-------------------------------|--------------------------------|---------------------|---------------------------------------|-----------------------|---------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | AV
Kc | VG/
mil | No. | inch | inch | mil | inch | No. x AWG | mil | inch | mil | inch | lb/
1000ft | lb/1000ft | | 5 | 00 | 37 | 0.789 | 1.185 | 175 | 1.245 | 26x14 | 80 | 1.923 | 60 | 2.043 | 1896 | 3132 | All dimensions are nominal and subject to normal manufacturing tolerances ### Table 2 – Electrical and Engineering Data | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | inch | lb | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 500 | 24.5 | 4000 | 0.022 | 0.030 | 0.019 | 0.044 | 0.365 +
j0.271 | 0.031 +
j0.044 | 20275 | 616 | 497 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center. # **Table 3 – Weights and Measurements (Metric)** | Cond.
Size | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter Over
Insulation
Shield | Concentric
Neutral | Inner Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |---------------|--------|-------------------------------|--------------------------------|---------------------|---------------------------------------|-----------------------|---------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | AWG/
Kcmil | No. | mm | mm | mm | mm | No. x AWG | mm | mm | mm | mm | kg/km | kg/km | | 500 | 37 | 20.04 | 30.10 | 4.44 | 31.62 | 26x14 | 2.03 | 48.84 | 1.52 | 51.89 | 2822 | 4661 | All dimensions are nominal and subject to normal manufacturing tolerances [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination ^{*} CEC ampacities are based on: ^{3-1/}C in air copper and aluminum: D17M ^{3-1/}C direct buried copper and aluminum: D17A [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination # **Table 4 – Electrical and Engineering Data (Metric)** | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | mm | newton | Ω/km | Ω/km | MΩ*km | Ω/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 500 | 622.30 | 17800 | 0.0722 | 0.10 | 0.0058 | 0.1444 | 0.365 +
j0.271 | 0.031 +
j0.044 | 20275 | 616 | 497 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing center-to-center. ^{*} CEC ampacities are based on: ^{3-1/}C in air copper and aluminum: D17M ^{3-1/}C direct buried copper and aluminum: D17A