SPEC 26151 Stock #: TBA # **HVTECK CU 3/C 90TRXLPE TS PVC AIA PVC 5kV 100% CSA** 3 Conductor, 90 Mils Tree Retardant Cross Linked Polyethylene, 100% Insulation Level, Tape Shield, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket Image not to scale. See Table 1 for dimensions. ### **CONSTRUCTION:** - 1. **Conductor:** Class B compressed stranded bare copper per ASTM B3 and ASTM B8 - 2. **Conductor Shield:** Semi-conducting cross-linked copolymer - 3. Insulation: 90 Mils Tree Retardant Cross Linked Polyethylene 100% insulation level - 4. **Insulation Shield:** Strippable semi-conducting cross-linked copolymer - 5. **Copper Tape Shield:** Helically wrapped 5 mil copper tape with 25% overlap - 6. **Filler:** Non-wicking, non-hygroscopic and flame retardant polypropylene filler - 7. **Grounding Conductor:** Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8 - 8. Binder: Polypropylene tape - 9. **Inner Jacket:** PVC inner jacket - 10. Armour: Aluminum Interlocked Armour (AIA) - 11. Overall Jacket: Orange Polyvinyl Chloride (PVC) Jacket #### **APPLICATIONS AND FEATURES:** Southwire's 5kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant. #### SPECIFICATIONS: - ASTM B3 Soft or Annealed Copper Wire - ASTM B8 Concentric-Lay-Stranded Copper Conductors - CSA C22.2 No. 174 Cables in Hazardous Locations - CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods - CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications 5 to 46 KV - CSA C68.3 Shielded & Concentric Neutral Power Cable 5 to 46 kV - CSA LTGG [-40°C] as per C68.10 for Cold Bend and Impact rating - CSA HL for Hazardous Locations rating - CSA SUN RES for Sunlight Resistant rating - ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable - ICEA T-29-520 Flame Test (210,000 BTU/Hr) - IEEE 383 Flame Test (70,000 btu) - IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test - FT1 Flame Test (1,706 BTU/Hr nominal Vertical Wire Flame Test) - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements) #### **SAMPLE PRINT LEGEND:** (CSA) SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CU 90 TRXLPE AIA 5kV 100% INS LEVEL 25% TS SUN RES 105°C FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS] # **Table 1 – Weights and Measurements** | Cond.
Size | Strand | Diameter Over
Conductor | Diameter Over
Insulation | Insul.
Thickness | Diameter Over
Insulation Shield | Ground
Size | Inner Jacket
Thickness | Dia. Over
Armour | Overall Jacket
Thickness | Approx.
OD | Approx.
Weight | |---------------|--------|----------------------------|-----------------------------|---------------------|------------------------------------|----------------|---------------------------|---------------------|-----------------------------|---------------|-------------------| | AWG/
Kcmil | No. | inch | inch | mil | inch | AWG | mil | inch | mil | inch | lb/1000ft | | 1 | 19 | 0.322 | 0.540 | 90 | 0.600 | 6 | 80 | 1.855 | 60 | 1.975 | 2160 | All dimensions are nominal and subject to normal manufacturing tolerances ## Table 2 – Electrical and Engineering Data | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance* | Positive
Sequence
Impedance* | Phase
Short
Circuit
Current @
60Hz | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|--------------------------------|------------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | inch | lb | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1 | 13.8 | 2008 | 0.128 | 0.162 | 0.035 | 0.037 | 0.529 +
j0.523 | 0.162 + j0.037 | 1858 | 197 | 228 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing. # **Table 3 – Weights and Measurements (Metric)** | Cond.
Size | Strand | Diameter Over
Conductor | Diameter Over
Insulation | Insul.
Thickness | Diameter Over
Insulation Shield | | Inner Jacket
Thickness | Dia. Over
Armour | Overall Jacket
Thickness | Approx.
OD | Approx.
Weight | |---------------|--------|----------------------------|-----------------------------|---------------------|------------------------------------|-----|---------------------------|---------------------|-----------------------------|---------------|-------------------| | AWG/
Kcmil | No. | mm | mm | mm | mm | AWG | mm | mm | mm | mm | kg/km | | 1 | 19 | 8.18 | 13.72 | 2.29 | 15.24 | 6 | 2.03 | 47.12 | 1.52 | 50.17 | 3214 | All dimensions are nominal and subject to normal manufacturing tolerances [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination **SPEC 26151** Stock #: TBA # **Table 4 – Electrical and Engineering Data (Metric)** | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance* | Positive
Sequence
Impedance* | Phase
Short
Circuit
Current @
60Hz | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|--------------------------------|------------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | mm | newton | Ω/km | Ω/km | MΩ*km | Ω/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1 | 350.52 | 8936 | 0.4199 | 0.53 | 0.0107 | 0.1214 | 0.529 +
j0.523 | 0.162 + j0.037 | 1858 | 197 | 228 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing.