CU 600/1000V XLPE Insulation ARMOR-X ${ }^{\circledR}$ Thermoplastic LSZH-TP Jacket XHHW-2. CT Rated -Sunlight Resistant - For Direct Burial Silicone Free

Type MC-HL Power Cable 600Volt Four Conductor Copper, Cross Linked Polyethylene (XLPE) insulation XHHW-2 Continuous Corrugated Welded Armor - ARMOR-X ${ }^{\circledR}$, Thermoplastic SOLONON® Low Smoke Zero Halogen (LSZH-TP) Jacket with 1 Bare CU Ground

Image not to scale. See Table 1 for dimensions.

CONSTRUCTION:

1. Conductor: Class B compressed stranded bare copper per ASTM B3 and B8
2. Insulation: Cross Linked Polyethylene (XLPE) Type XHHW-2
3. Grounding Conductor: Class B compressed stranded bare copper per ASTM B3 and B8
4. Filler: Paper filler (cable size 8 \& 6 uses Polypropylene filler)
5. Binder: Polypropylene tape
6. Armor: ARMOR-X ${ }^{\circledR}$ Continuous Corrugated Welded Armor
7. Overall Jacket: Thermoplastic SOLONON® Low Smoke Zero Halogen (LSZH-TP) Jacket

APPLICATIONS AND FEATURES:

Southwire's 600 Volt Type MC-HL ARMOR-X ${ }^{\circledR}$ power cables are suited for use in wet and dry areas, conduits, ducts, troughs, trays, direct burial, aerial supported by a messenger, and where superior electrical properties are desired. These cables are capable of operating continuously at the conductor temperature not in excess of $90^{\circ} \mathrm{C}$ for normal operation in wet and dry locations, $130^{\circ} \mathrm{C}$ for emergency overload, $250^{\circ} \mathrm{C}$ for short circuit conditions, and $-50^{\circ} \mathrm{C}$ for cold bend. For uses in Class I, II, and III, Division 1 and 2 hazardous locations per NEC Article 501, 502, and 503.

SPECIFICATIONS:

- ASTM B3 Soft or Annealed Copper Wire
- ASTM B8 Concentric-Lay-Stranded Copper Conductors
- UL 44 Thermoset-Insulated Wires and Cables
- UL 1569 Metal-Clad Cables
- UL 1685 FT4 Vertical-Tray Fire Propagation and Smoke Release Test
- ICEA S-58-679 Control Cable Conductor Identification Method 3 (1-BLACK, 2-RED, 3-BLUE)
- ICEA S-95-658 (NEMA WC70) Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- IEEE 1202 FT4 Flame Test $(70,000)$ BTU/hr Vertical Tray Test
- NFPA 130 Standard for Fixed Guideway Transit and Passenger Rail Systems (500kcmil \& Larger)

Southwire

SAMPLE PRINT LEGEND:

\{SOFTG_DUAL\} SOUTHWIRE® \{UL\} ARMOR-X ${ }^{\circledR}$ TYPE MC-HL 4/C XXX AWG (XXX\{mm2\}) CU XHHW-2 GW 1 XX AWG $90^{\circ} \mathrm{C}$ SOLONON® JACKET -40º ST1 SUN.RES. DIR. BUR. FOR CT USE 600V IEEE1202/FT4 -- \{NOM\}-ANCE Tipo MC XHHW-2 CT FT4

Table 1 - Weights and Measurements

Cond. Size	Cond. Number	Strand Count	Diameter Over Conductor	Insul. Thickness	Ground	Dia. Over Armor	Jacket Thickness	$\begin{gathered} \text { Approx. } \\ \text { OD } \end{gathered}$	Copper Weight	Approx. Weight
AWG/ Kcmil		No. of Strands	inch	mil	No. x AWG	inch	mil	inch	$\mathrm{lb} / 1000 \mathrm{ft}$	lb/1000ft
8	4	7	0.141	45	1×10	0.790	50	0.890	237	504

All dimensions are nominal and subject to normal manufacturing tolerances
\diamond Cable marked with this symbol is a standard stock item
Table 2 - Electrical and Engineering Data

Cond. Size	Cond. Number	Min Bending Radius	Max Pull Tension	DC Resistance @ $25^{\circ} \mathrm{C}$	AC Resistance @ $75^{\circ} \mathrm{C}$	Capacitive Reactance @ 60 Hz	Inductive Reactance @ 60 Hz	Allowable Ampacity At $75^{\circ} \mathrm{C}$	Allowable Ampacity At $90^{\circ} \mathrm{C}$
AWG/ Kcmil		inch	lb	ת/1000ft	ת/1000ft	$\mathrm{M} \Omega^{*} 1000 \mathrm{ft}$	ת/1000ft	Amp	Amp
8	4	6.2	422	0.653	0.786	0.033	0.052	40	44

[^0]
[^0]: * Ampacities based upon 2023 NEC Table 310.16. See NEC sections 310.15 and 110.14(C) for additional requirements.
 * Ampacities have been adjusted for more than Three Current-Carrying Conductors.

