
PowerGlide Quadruplex 600 Volt Underground Service Entrance Aluminum Conductor. Cross-linked Polyethylene (XLP) Insulation. HI-SCORE available upon request. Easy to Pull or Push.

CONSTRUCTION:

- 1. Conductor: Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum
- 2. Insulation: Cross Linked Polyethylene (XLPE). LLDPE or HDPE based polymer
- 3. **Neutral:** Cross Linked Polyethylene (XLPE) with three Yellow Extruded Stripes (YES)
- 4. **PowerGlide:** Engineered spiral-wrapped glide wire that reduces installation friction and maintains bundle integrity

For information about our Cable-Rejuvenation Services please visit us at: Cable-Rejuvenation Services You can email us at: Cable-Rejuvenation Services

APPLICATIONS AND FEATURES:

Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum, insulated with cross-linked polyethylene. Neutrals are identified by three yellow extruded stripes "YES". Cables with "YES" neutrals have sequential footage markers. Conductors are durably surface printed for identification. Two-phase conductors and one neutral conductor are cabled together to produce the triplex cable configuration. Twisted conductors are bound with an engineered spiral-wrapped glide wire that reduces installation friction and maintains bundle integrity. These cables are capable of operating continuously at the conductor temperature not in excess of 90°C for normal operation in wet and dry locations, 130°C for emergency overload, and 250°C for short circuit conditions

SPECIFICATIONS:

- ASTM B231 Standard Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
- ASTM B609 Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes
- ASTM 786 19 Wire Combination Unilay-Stranded Aluminum Conductors
- ASTM B901 Standard Specification for Compressed Round Stranded Aluminum Conductors Using Single Input Wire Construction. (The number of strands for both phase and neutral may differ)
- UL 854 Service Entrance Cable
- ICEA S-81-570 Standard for 600 Volt Rated Cables of Ruggedized Design for Direct Burial Installations as Single Conductors or Assemblies of Single Conductors
- ICEA S-105-692 Standard For 600 Volt Single Layer Thermoset Insulated Utility Underground Distribution Cables

Southwire Company, LLC | One Southwire Drive, Carrollton, GA 30119 | www.southwire.com

CABLET

Table 1 – Weights and Measurements

Stock Number	Code Word	Phase Cond. Size	Phase Strand	Dia. Over Phase Conductor	Phase Insul. Thickness	Dia. Over Phase Insulation	Neutral Cond. Size	Neutral Strand	Neutral Insul. Thickness	Dia. Over Neutral Insulation	Approx. OD	Approx. Weight
		AWG/ Kcmil	No.	inch	mil	inch	AWG/ Kcmil	No.	mil	inch	inch	lb/1000ft
TBA	Slippery Rock	350	30	0.661	95	0.658	4/0	18	80	0.658	2.006	1531

All dimensions are nominal and subject to normal manufacturing tolerances

Notes:

1. The actual number of strands may differ for single input wire per ASTM B901

Table 2 – Electrical and Engineering Data

Code Word	Phase Cond. Size	Min Bending Radius	Max Pull Tension	DC Resistance @ 25°C	AC Resistance @ 75°C	Inductive Reactance @ 60Hz	GMR	Allowable Ampacity in Duct 90°C	Allowable Ampacity Directly Buried 90°C
	AWG/ Kcmil	inch	lb	Ω/1000ft	Ω/1000ft	Ω/1000ft	ft	Amp	Amp
Slippery Rock	350	12.0	6720	0.050	0.062	0.040	0.020	305	385

Notes:

1. Inductive reactance assumes cables are cradled in conduit, and the neutral is carrying no current.

2. Triple parallel inductive reactance calculation assumes the phase conductors are adjacent to one another.

3. Conductors assumed to be reverse lay stranded, compressed construction.

4. Phase spacing assumes cables are touching.

5. Resistances shown are for the Phase conductors only.

6. Ampacity based on 90°C conductor temperature, 20°C ambient, RHO 90, 100% load factor.

