Triplex 600 Volt USE-2 HI-SCORE Underground Service Entrance

Aluminum Conductor. HI-SCORE Cross-linked Polyethylene (XLP) Insulation.

Image not to scale. See Table 1 for dimensions.

CONSTRUCTION:

1. Conductor: Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum
2. Insulation: Rugged Cross Linked Polyethylene (XLPE) meeting the requirements of ANSI/ICEA S-81-570. LLDPE and HDPE or MDPE
3. Neutral: Cross Linked Polyethylene (XLPE) with three Yellow Extruded Stripes (YES)

For information about our Cable-Rejuvenation Services please visit us at: Cable-Rejuvenation Services
You can email us at: Cable-Rejuvenation Services

APPLICATIONS AND FEATURES:

Conductors are stranded, compressed 1350-H16/H26 (3/4 Hard) aluminum, insulated with cross-linked polyethylene. Especially suited for applications requiring superior resistance to mechanical damage. Neutrals are identified by three yellow extruded stripes. Cables with "YES" neutrals have sequential footage markers. Conductors are durably surface printed for identification. Two-phase conductors and one neutral conductor are cabled together to produce the triplex cable configuration. These cables are capable of operating continuously at the conductor temperature not in excess of $90^{\circ} \mathrm{C}$ for normal operation in wet and dry locations, $130^{\circ} \mathrm{C}$ for emergency overload, and $250^{\circ} \mathrm{C}$ for short circuit conditions. UL listed as USE-2 per UL 854 Service-Entrance Cables.

SPECIFICATIONS:

- ASTM B231 Standard Specification for Concentric-Lay-Stranded Aluminum 1350 Conductors
- ASTM B609 Standard Specification for Aluminum 1350 Round Wire, Annealed and Intermediate Tempers, for Electrical Purposes
- ASTM B901 Standard Specification for Compressed Round Stranded Aluminum Conductors Using Single Input Wire Construction. (The number of strands for both phase and neutral may differ)
- UL 854 Service Entrance Cable
- ICEA S-81-570 Standard for 600 Volt Rated Cables of Ruggedized Design for Direct Burial Installations as Single Conductors or Assemblies of Single Conductors
- ICEA S-105-692 Standard For 600 Volt Single Layer Thermoset Insulated Utility Underground Distribution Cables

Southwire

Table 1 - Weights and Measurements

Stock Number	Code Word	Phase Cond. Size	Phase Strand	Dia. Over Phase Conductor	Phase Insul. Thickness	Dia. Over Phase Insulation	Neutral Cond. Size	Neutral Strand	Neutral Insul. Thickness	Dia. Over Neutral Insulation	$\begin{aligned} & \text { Approx. } \\ & 0 D \end{aligned}$	Approx Weight
		AWG/ Kcmil	No.	inch	mil	inch	AWG/ Kcmil	No.	mil	inch	inch	lb/1000ft
TBA	Hollins	3/0	17	0.456	80	0.603	1/0	9	80	0.512	1.302	581

All dimensions are nominal and subject to normal manufacturing tolerances

1. The actual number of strands may differ for single input wire per ASTM B901

Table 2 - Electrical and Engineering Data

Code Word	Phase Cond. Size	Min Bending Radius	Max Pull Tension	DC Resistance @ $25^{\circ} \mathrm{C}$	AC Resistance @ $75^{\circ} \mathrm{C}$	Inductive Reactance @ 60 Hz	GMR	Allowable Ampacity in Duct $90^{\circ} \mathrm{C}$	Allowable Ampacity Directly Buried $90^{\circ} \mathrm{C}$
	AWG/ Kcmil	inch	lb	ת/1000ft	$\Omega / 1000 f t$	ת/1000ft	ft	Amp	Amp
Hollins	3/0	6.5	3020	0.105	0.126	0.042	0.014	205	280

Notes:

1. Inductive reactance assumes cables are cradled in conduit, and the neutral is carrying no current.
2. Triple parallel inductive reactance calculation assumes the phase conductors are adjacent to one another.
3. Conductors assumed to be reverse lay stranded, compressed construction.
4. Phase spacing assumes cables are touching.
5. Resistances shown are for the Phase conductors only.
6. Ampacity based on $90^{\circ} \mathrm{C}$ conductor temperature, $20^{\circ} \mathrm{C}$ ambient, RHO $90,100 \%$ load factor.
