
HVTECK AL 3/C 140TRXLPE TS PVC AIA PVC 8kV 133% CSA

3 Conductor, 140 Mils Tree Retardant Cross Linked Polyethylene, 133% Insulation Level, Tape Shield, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket

CONSTRUCTION:

- 1. Conductor: Class B compact stranded 8000 Series aluminum per ASTM B800 and ASTM B836
- 2. **Conductor Shield:** Semi-conducting cross-linked copolymer; A conductor separator is used for cable size larger than or equal to 500 Kcmil
- 3. Insulation: 140 Mils Tree Retardant Cross Linked Polyethylene 133% insulation level
- 4. Insulation Shield: Strippable semi-conducting cross-linked copolymer
- 5. Copper Tape Shield: Helically wrapped 5 mil copper tape with 25% overlap
- 6. Filler: Interstices filled with non-hydroscoping/non-wicking fillers
- 7. Grounding Conductor: Class B compressed stranded bare copper ground per ASTM B3 and ASTM B8
- 8. Binder: Polypropylene tape
- 9. Inner Jacket: PVC inner jacket
- 10. Armour: Aluminum Interlocked Armour (AIA)
- 11. Overall Jacket: Black Polyvinyl Chloride (PVC) Jacket

APPLICATIONS AND FEATURES:

Southwire's 8kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant.

SPECIFICATIONS:

- ASTM B801 Concentric-Lay-Stranded Conductors of 8000 Series Aluminum Alloy
- ASTM B836 Compact Rounded Stranded Aluminum Conductors
- CSA C22.2 No. 174 Cables in Hazardous Locations
- CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods
- CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications 5 to 46 KV
- CSA C68.3 Shielded & Concentric Neutral Power Cable 5 to 46 kV
- CSA LTGG [-40°C] as per C68.10 for Cold Bend and Impact rating
- CSA HL for Hazardous Locations rating
- CSA SUN RES for Sunlight Resistant rating
- ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable

Southwire Company, LLC | One Southwire Drive, Carrollton, GA 30119 | www.southwire.com

UPDATED: Dec. 11, 2023, 9:29 p.m.UTC REVISION: 1.000.000

- ICEA T-29-520 Flame Test (210,000 BTU/Hr)
- IEEE 383 Flame Test (70,000 btu)
- IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test (1/0 and Larger)
- IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test
- FT1 Flame Test (1,706 BTU/Hr nominal Vertical Wire Flame Test)
- AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements)

SAMPLE PRINT LEGEND:

(CSA) SOUTHWIRE (NESC) #P# 3/C [#AWG or #kcmil] CPT AL 140 TRXLPE AIA 8kV 133% INS LEVEL 25% TS SUN RES 105°C FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS]

Table 1 – Weights and Measurements

Stock Number	Cond. Size	Strand	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Ground Size	Inner Jacket Thickness	Dia. Over Armour	Overall Jacket Thickness	Approx. OD	Copper Weight	Approx. Weight
	AWG/ Kcmil	No.	inch	inch	mil	inch	AWG	mil	inch	mil	inch	lb/ 1000ft	lb/ 1000ft
673689	2	8	0.268	0.586	140	0.646	8	80	1.949	60	2.069	223	1726

All dimensions are nominal and subject to normal manufacturing tolerances

 $\ensuremath{\diamond}$ Cable marked with this symbol is a standard stock item

* Strand count meets minimum number per ASTM

Table 2 – Electrical and Engineering Data

Cond. Size	Min Bending Radius	Max Pull Tension	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Zero Sequence Impedance	Positive Sequence Impedance	Phase Short Circuit Current @ 6 Cycles	Allowable Ampacity In Air 90°C	Allowable Ampacity Directly Buried 90°C
AWG/ Kcmil	inch	lb	Ω/1000ft	Ω/1000ft	MΩ*1000ft	Ω/1000ft	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
2	14.5	1194	0.267	0.336	0.048	0.043	0.708 + j0.498	0.336 + j0.042	2032	135	157

* Inductive impedance is based on non-ferrous conduit with one diameter spacing.

Table 3 – Weights and Measurements (Metric)

Stock Number	Cond. Size	Strand	Diameter Over Conductor	Diameter Over Insulation	Insul. Thickness	Diameter Over Insulation Shield	Ground Size	Inner Jacket Thickness	Dia. Over Armour	Overall Jacket Thickness	Approx. OD	Copper Weight	Approx. Weight
	AWG/ Kcmil	No.	mm	mm	mm	mm	AWG	mm	mm	mm	mm	kg/km	kg/km
673689	2	8	6.81	14.88	3.56	16.41	8	2.03	49.50	1.52	52.55	332	2569

All dimensions are nominal and subject to normal manufacturing tolerances

♦ Cable marked with this symbol is a standard stock item

* Strand count meets minimum number per ASTM

SPEC 26272

Table 4 – Electrical and Engineering Data (Metric)

Cond. Size	Min Bending Radius	Max Pull Tension	DC Resistance @ 25°C	AC Resistance @ 90°C	Capacitive Reactance @ 60Hz	Inductive Reactance @ 60Hz	Zero Sequence Impedance	Positive Sequence Impedance	Phase Short Circuit Current @ 6 Cycles	Allowable Ampacity In Air 90°C	Allowable Ampacity Directly Buried 90°C
AWG/ Kcmil	mm	newton	Ω/km	Ω/km	$M\Omega^*$ km	Ω/km	Ω/1000ft	Ω/1000ft	Amp	Amp	Amp
2	368.30	5313	0.8760	1.10	0.0146	0.1411	0.708 + j0.498	0.336 + j0.042	2032	135	157

* Inductive impedance is based on non-ferrous conduit with one diameter spacing.

