HVTECK CU 1/C 115NLEPR CB PVC AIA PVC 8kV 100% CSA Single Conductor, 115 Mils No Lead Ethylene Propylene Rubber (NL-EPR), 100% Insulation Level, Concentric Bond, Polyvinyl Chloride (PVC) Inner Jacket, Aluminum Interlocked Armour (AIA), Polyvinyl Chloride (PVC) Jacket Image not to scale. See Table 1 for dimensions. #### **CONSTRUCTION:** - 1. **Conductor:** Class B compressed stranded bare copper per ASTM B3 and ASTM B8 - 2. Conductor Shield: Semi-conducting cross-linked copolymer - 3. Insulation: 115 Mils No Lead Ethylene Propylene Rubber (NL-EPR) 100% insulation level - 4. **Insulation Shield:** Strippable semi-conducting cross-linked copolymer - 5. **Concentric Shield:** Concentrically applied copper bond / shield wires. Complies with greater than the minimum requirement as per Table 44, CSA Standard C68.10 and Table 16A, Canadian Electrical Code Part 1 - 6. Neutral Separator: Mylar tape - 7. Inner Jacket: PVC inner jacket - 8. Armour: Aluminum Interlocked Armour (AIA) - 9. Overall Jacket: Orange Polyvinyl Chloride (PVC) Jacket #### **APPLICATIONS AND FEATURES:** Southwire's 8kV HVTECK is a CSA armoured cable for industrial and commercial medium voltage applications. Rated FT4, -40°C, Hazardous Locations (HL). These cables are capable of operating continuously at the conductor temperature not in excess of 105°C for normal operation, 140°C for emergency overload, and 250°C for short circuit conditions. Rated for 1000 lbs /FT maximum sidewall pressure. These cables feature sunlight and moisture resistance, exceptional corona resistance, resistance to most chemical soils and acids and are flame retardant. #### **SPECIFICATIONS:** - ASTM B3 Soft or Annealed Copper Wire - ASTM B8 Concentric-Lay-Stranded Copper Conductors - CSA C22.2 No. 174 Cables in Hazardous Locations - CSA C22.2 No. 2556 & No. 0.3 Wire and Cable Test Methods - CSA C68.10 Shielded Power Cables for Commercial and Industrial Applications 5 to 46 KV - CSA C68.3 Shielded & Concentric Neutral Power Cable 5 to 46 kV - CSA LTGG [-40°C] as per C68.10 for Cold Bend and Impact rating - CSA HL for Hazardous Locations rating - CSA SUN RES for Sunlight Resistant rating - ICEA S-93-639 (NEMA WC 74) 5-46 KV Shielded Power Cable - ICEA T-29-520 Flame Test (210,000 BTU/Hr) - IEEE 383 Flame Test (70,000 btu) - IEEE 1202 FT4 Flame Test (70,000) BTU/hr Vertical Tray Test (1/0 and Larger) - FT1 Flame Test (1,706 BTU/Hr nominal Vertical Wire Flame Test) - AEIC CS-8 Specification for extruded dielectric shielded power cables rated for 5 through 46KV (Qualification Test Requirements) #### **SAMPLE PRINT LEGEND:** (CSA) SOUTHWIRE (NESC) #P# 1/C [#AWG or #kcmil] CU 115 NLEPR AIA 8kV 100% INS LEVEL CB [No. x SIZE] AWG SUN RES 105°C FT4 HL (-40°C) LTGG RoHS YEAR [SEQUENTIAL METER MARKS] ### **Table 1 – Weights and Measurements** | Cond.
Size | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter Over
Insulation
Shield | Concentric
Neutral | Inner Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |---------------|--------|-------------------------------|--------------------------------|---------------------|---------------------------------------|-----------------------|---------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | AWG/
Kcmil | No. | inch | inch | mil | inch | No. x AWG | mil | inch | mil | inch | lb/
1000ft | lb/1000ft | | 1/0 | 19 | 0.361 | 0.629 | 115 | 0.689 | 11x14 | 80 | 1.199 | 50 | 1.299 | 474 | 1041 | All dimensions are nominal and subject to normal manufacturing tolerances ## Table 2 – Electrical and Engineering Data | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance @
60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | inch | lb | Ω/1000ft | Ω/1000ft | MΩ*1000ft | Ω/1000ft | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1/0 | 15.6 | 844 | 0.102 | 0.128 | 0.026 | 0.051 | 0.485 +
j0.468 | 0.129 +
j0.051 | 8577 | 278 | 275 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing. ## **Table 3 – Weights and Measurements (Metric)** | Cond.
Size | Strand | Diameter
Over
Conductor | Diameter
Over
Insulation | Insul.
Thickness | Diameter Over
Insulation
Shield | Concentric
Neutral | Inner Jacket
Thickness | Dia. Over
Armour | Overall
Jacket
Thickness | Approx.
OD | Copper
Weight | Approx.
Weight | |---------------|--------|-------------------------------|--------------------------------|---------------------|---------------------------------------|-----------------------|---------------------------|---------------------|--------------------------------|---------------|------------------|-------------------| | AWG/
Kcmil | No. | mm | mm | mm | mm | No. x AWG | mm | mm | mm | mm | kg/km | kg/km | | 1/0 | 19 | 9.17 | 15.98 | 2.92 | 17.50 | 11x14 | 2.03 | 30.45 | 1.27 | 32.99 | 705 | 1549 | All dimensions are nominal and subject to normal manufacturing tolerances [♦] Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination $[\]Diamond$ Cable marked with this symbol is a standard stock item ¹ Comply with ICEA S-93-639 Appendix C for jacket thickness determination **SPEC 26205** Stock #: TBA ## **Table 4 – Electrical and Engineering Data (Metric)** | Cond.
Size | Min
Bending
Radius | Max Pull
Tension | DC
Resistance
@ 25°C | AC
Resistance
@ 90°C | Capacitive
Reactance
@ 60Hz | Inductive
Reactance
@ 60Hz | Zero
Sequence
Impedance | Positive
Sequence
Impedance | Phase
Short
Circuit
Current @
6 Cycles | Allowable
Ampacity In
Air 90°C | Allowable
Ampacity
Directly
Buried 90°C | |---------------|--------------------------|---------------------|----------------------------|----------------------------|-----------------------------------|----------------------------------|-------------------------------|-----------------------------------|--|--------------------------------------|--| | AWG/
Kcmil | mm | newton | Ω/km | Ω/km | MΩ*km | Ω/km | Ω/1000ft | Ω/1000ft | Amp | Amp | Amp | | 1/0 | 396.24 | 3756 | 0.3346 | 0.42 | 0.0079 | 0.1673 | 0.485 +
j0.468 | 0.129 +
j0.051 | 8577 | 278 | 275 | ^{*} Inductive impedance is based on non-ferrous conduit with one diameter spacing.